Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses.

نویسندگان

  • Kathryn M Tabor
  • Sadie A Bergeron
  • Eric J Horstick
  • Diana C Jordan
  • Vilma Aho
  • Tarja Porkka-Heiskanen
  • Gal Haspel
  • Harold A Burgess
چکیده

Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish.

Despite recent advances that have elucidated the effects of collateral of motor commands on sensory processing structures, the neural mechanisms underlying the modulation of active sensory systems by internal motor-derived signals remains poorly understood. This study deals with the neural basis of the modulation of the motor component of an active sensory system triggered by a central motor co...

متن کامل

1. Neural Substrate of an Increase in Sensory Sampling 1 Triggered by a Motor Command in a Gymnotid

20 Despite recent advances that have elucidated the effects of collateral of 21 motor commands on sensory processing structures, the neural mechanisms 22 underlying the modulation of active sensory systems by internal motor-derived 23 signals remains poorly understood. This paper deals with the neural basis of the 24 modulation of the motor component of an active sensory system triggered by a 2...

متن کامل

Visual Input Modulates Audiomotor Function via Hypothalamic Dopaminergic Neurons through a Cooperative Mechanism

Visual cues often modulate auditory signal processing, leading to improved sound detection. However, the synaptic and circuit mechanism underlying this cross-modal modulation remains poorly understood. Using larval zebrafish, we first established a cross-modal behavioral paradigm in which a preceding flash enhances sound-evoked escape behavior, which is known to be executed through auditory aff...

متن کامل

Mauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli.

We determined how the Mauthner cell and other large, fast-conducting reticulospinal neurons of the goldfish responded to acoustic stimuli likely to be important in coordinating body movements underlying escape. The goal was to learn about the neurophysiological responses to these stimuli and the underlying processes of sensorimotor integration. We compared the intracellularly recorded postsynap...

متن کامل

Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation

Introduction:  Electroporation  is  a  technique  for  increasing  the  permeability  of  the  cell  membrane  to  otherwise  non-permeate  molecules  due  to  an  external  electric  field.  This  permeability  enhancement  is  detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the  pulse  strength  threshold.  In  this  study,  the  variabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 112 4  شماره 

صفحات  -

تاریخ انتشار 2014